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We present the path integral representation of the generating function for classical exclusive particle sys-
tems. By introducing hard-core bosonic creation and annihilation operators and appropriate commutation
relations, we construct the Fock space structure. Using the state vector, the generating function is defined and
the master equation of the system is transformed into the equation for the generating function. Finally, the
solution of the linear equation for the generating function is derived in the form of the path integral. Applying
the formalism, the equivalence of reaction-diffusion processes of single species and two species is described.
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I. INTRODUCTION

Recently, nonequilibrium systems such as reaction-
diffusion systems, driven lattice systems, and cellular au-
tomata have been intensely investigated, not only because of
their connections to a variety of important physical phenom-
ena snonequilibrium phase transitions, long-range correla-
tions, and self-organized criticalityd, but also because of the
analytic challenge due to the lack of a general formalism to
describe nonequilibrium systemsf1g. Although numerical ap-
proaches have played a major role in the investigation of
nonequilibrium systems and have been successful in many
areas, a general field-theoretic formalism has been constantly
sought because, along with a renormalization-group analysis,
it would provide a systematic tool to evaluate physical ob-
servables in the scaling regimef2g. It is difficult to investi-
gate nonequilibrium systems analytically at the microscopic
scale because there are too many microscopic variables in-
volved, and microscopic variables take discrete values. A
field-theoretic strategy is to find, starting from the micro-
scopic rules, the equations of motion of well-chosen coarse-
grained variables. These mesoscopic variables take continu-
ous values and vary continuously in space and time. They
describe the system at the mesoscopic scale, while keeping
track of all the fluctuations related to the microscopic de-
grees of freedom. Doi first introduced a field-theoretic for-
malism for reaction-diffusion systems using the bosonic co-
herent state path integralf3g, and several authors revived the
formalism and incorporated renormalization-group ap-
proaches to the description of the anomalous kinetics in
reaction-diffusion systems and the stochastic sandpile model
f4–9g.

Despite the success achieved by the bosonic field theory
for reaction-diffusion systems, some nonequilibrium systems
with exclusive particles cannot be analyzed correctly by the
bosonic field theory. Driven reaction-diffusion systems
f10,11g, multispecies adsorption modelsf12g, and driven lat-
tice gasessDLGd f13g are some examples to which the
bosonic field theory cannot be applied. In these systems, the

exclusive property of the particles is important. Several at-
tempts have been made to incorporate the exclusive property
into a field theory. One way to take the exclusive property
into account is to exploit the physical knowledge of the sys-
tem phenomenologically as Zia and Schmittmannf13g have
done for the DLG. This method is an approximation and
cannot be systematic. Other approaches proposed by Brunel
et al. f14g and Bares and Mobiliaf15g are formulated using
the fermionic path integral and are rather difficult to analyze
and to extend for higher spatial dimensions or multispecies
processes. Recently, van Wijland extended the bosonic field
theory by introducing the exclusion constraint operator to
take the exclusive property into accountf16g. He used
bosonic creation and annihilation operators to construct the
path integral by considering the exclusive property using the
exclusion constraint operator.

The authors previously presented a hard-core bosonic
field theory using hard-core bosonic creation and annihila-
tion operatorsf17g. It has been successfully applied to the
asymmetric exclusion process and several restricted solid-on-
solid-type growth models to provide the correct Langevin-
type equations of motion and the proper path integral formu-
lation f18g. However, the formalism assumed the existence
of the Fokker-Planck equations for processesa priori and
derived the Langevin-type equations of motion. In this paper,
we develop a more general path integral formalism for non-
equilibrium systems with exclusive particles. In what fol-
lows, we present the derivation of the path integral formula-
tion for systems with exclusive particles using the generating
function of the correlation functions, and we will illustrate
how the formalism can be applied to various reaction-
diffusion systems to establish nonequilibrium universality
classes.

II. FORMALISM

The dynamics of a stochastic system are usually described
by the master equation governing the time evolution of the
probability PsC ; td. PsC ; td is the probability of a system be-
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ing in a microstateC at timet. The master equation takes the
form f19–21g

]

]t
PsC;td = o

C8ÞC
hWCC8PsC8;td − WC8CPsC;tdj, s1d

whereWC8C is the transition rate, or transition probability per
unit time, from microstateC to C8. Introducing the matrix
HCC8,

HCC8 = dCC8o
C9

WC9C − WCC8, s2d

Eq. s1d can be written succinctly as

]

]t
PsC;td = − o

C8
HCC8PsC8;td. s3d

Due to the resemblance of the master equation to the
Schrödinger equation, it is convenient to introduce Dirac’s
bra-ket notation and an orthonormal basis formed by mi-
crostates huClj. Introducing the state vector uP; tl
;oCPsC ; tduCl and theHamiltonianoperatorĤ whose com-
ponent isHCC8 in this orthonormal basis, the master equation
can be written in the form of an imaginary time Schrödinger
equation,

]

]t
uP;tl = − ĤuP;tl. s4d

In this representation, the average of a physical quantity can
be written as

kOl = o
C

OsCdPsC;td = k·uÔuP;tl, s5d

where Ô is an operator with the elementskC8uÔuCl
=dC,C8OsCd and the projection statek·u is defined as

k·u ; o
C

kCu. s6d

A natural way to deal with a stochastic system in which
the particle number at each site varies is to introduce a Fock-
space-like structure. When a system hasM different particle
species with the exclusive property, at each site there are
sM +1d possible states: a vacuum state andM occupied states
depending on particle species. Using Greek indices for the
kinds of particle species—a vacuum state is regarded as a
new species and 0 is reserved for a vacuum state—and bold
Latin indices for site locations, we denote a state at the siten
by uanl, wherean is the index of species occupying the site
n and goes from 0 toM. For microstates of the whole sys-
tem, we work in a phase space which is composed of the
direct product of single-site microstates of all siteshnj,

uhNjl = ^
n

uanl. s7d

At each siten, creation and annihilation of the exclusive
particles are described by creation and annihilation operators
as follows:

âa,n = u0nlkanu, âa,n
† = uanlk0nu sa Þ 0d, s8d

with the closure relation

o
a=0

M

uanlkanu = I s9d

and the orthonormality condition

kanubnl = da,b, a,b = 0,1,…,M . s10d

These operators obey the hard-core bosonic commutation re-
lations

âa,nâb,n = âa,n
† âb,n

† = 0, s11ad

âa,nâa,n
† = 1 − o

g=1

M

âg,n
† âg,n, s11bd

fâa,n,âb,m
† g = fâa,n,âb,mg = 0 sn Þ md, s11cd

where Eqs.s11ad and s11bd prohibit double occupancy at a
single site even for different species—hence the nomencla-
ture “hard core.” Equations11cd states that any two operators
defined at different sites commute—hence the name “boson.”

As usual,N̂a,n= âa,n
† âa,n is the number operator whose eigen-

values are 0svacantd and 1soccupiedd.
To each state of the system, we can associate the state

vector uP; tl, considered an element of Fock space,

uP;tl = o
hNj

PshNj;tduhNjl, s12d

where uhNjl is the microstate defined in Eq.s7d. The mi-
crostate can be written in terms of hard-core boson operators
as

uhNjl = p
n

p
a=1

M

sâa,n
† dNa,nuh0jl,

khNju = kh0jup
n

p
a=1

M

sâa,ndNa,n, s13d

whereNa,n is the eigenvalue of the number operator corre-

sponding to the eigenstatehNjlsN̂a,nuhNjl=Na,nuhNjld. Using
hard-core boson operators, the projection state can be written
as

k·u = kh0jup
n
S1 + o

a=1

M

âa,nD . s14d

Now we introduce the generating functionFshw̄j ; td, de-
fined as

Fshw̄j;td = khw̄juP;tl, s15d

where
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khw̄ju ; ^
n
Sk0nu + o

a=1

M

kanufsw̄a,ndD
= k·up

n
S1 + o

a=1

M

ffsw̄a,nd − 1gâa,n
† âa,nD , s16d

and f is an analytic function of its argument.F is the gener-
ating function in that by differentiatingF with respect tof
and settingf =1, we can find all kinds of correlation func-
tions of the particle density. For example,

kNa,nl = U ]

] fsw̄a,nd
Fshw̄j;tdU

f=1

= k·uâa,n
† âa,nuP;tl. s17d

The exact form off does not matter. In what follows, we
mainly use three kinds of functions,

fsw̄d = w̄, s18ad

fsw̄d = 1 + w̄, s18bd

fsw̄d = expsw̄d, s18cd

and these will be used in different contexts.
By differentiating Eq.s15d with respect tot, we obtain

]

]t
Fshw̄j;td = − khw̄juĤuP;tl. s19d

Since our main goal is to find a path integral representation
of Fshw̄j ; td from Eq. s19d, we need to find a linear partial
differential equation aboutFshw̄j ; td. This can be achieved
using the following properties ofkhw̄ju:

khw̄juâa,n
† = fsw̄a,ndV̂nkhw̄ju, s20ad

khw̄juâa,n =
]

] fsw̄a,nd
khw̄ju, s20bd

khw̄juâa,n
† âb,n = fsw̄a,nd

]

] fsw̄b,nd
khw̄ju, s20cd

khw̄juâa,nâb,n
† = dabV̂nkhw̄ju, s20dd

where

V̂n ; S1 − o
b=1

M
]

] ln fsw̄b,ndD
is the projection operator to the vacuum state at siten. Re-
lationss20d yield the partial differential equation for the gen-
erating function,

]

]t
Fshw̄j;td = − LShw̄j,H ]

]w̄
JDFshw̄j;td, s21d

whereL takes the normal-ordered form, that is, allw̄’s are
located to the left side of any] /]w̄. We callL an evolution
operator. Since this is a linear equation, we can write the path
integral solution ofFshw̄j ; td. The path integral solution of

Eq. s21d with any of the prescription Eqs.s18d is

Fshj̄j;td =E p
a,n

dha,ndh̄a,n

2pi
e−ha,nh̄a,nFshh̄j;0dThhj

hj̄j std,

s22d

with

Thhj
hj̄j std =E Dhw̄jDhwje−Sshw̄j,hwj,td+hj̄j·hwstdj+hhj·hw̄s0dj, s23d

where

S=E
0

t

dtFo
a,n

w̄a,n
]

]t
wa,n + L„hw̄stdj,hwstdj…G s24d

and

hj̄j · hhj = o
a,n

j̄a,nha,n. s25d

Taking a continuum limit and keeping the most relevant
terms, we arrive at mesoscopic action which is equivalent to
the microscopic master equation. The long-time properties
are extracted by studying the action using renormalization-
group theory.

III. EQUIVALENCE BETWEEN STOCHASTIC SYSTEMS

The equivalence between stochastic systems has been
usually studied using similarity transformation for single-
species reaction-diffusion systemsf22g. This section shows
the equivalence between stochastic systems using the evolu-
tion equation of the generating function in Eq.s21d with the
prescription Eq.s18bd instead of using the similarity trans-
formation. The key mechanism to deduce the equivalence
between stochastic systems is the rescaling of the fieldw̄ ssee
belowd, which is simple enough to be applicable to higher-
dimensional systems and multispecies systems.

To begin with, we consider a single-species reaction-
diffusion model which is defined on ad-dimensional hyper-
cubic lattice with diffusion, pair annihilation, coalescence,
death, and single-particle branching. Particles move with a
diffusion constantD. When two particles form a nearest-
neighbor pair, both of them are annihilated with ratel or one
of them is removed with rateh. Additionally, a single par-
ticle is annihilated spontaneously with rated and a particle-
vacant pair becomes a particle-particle pair with rates. The
dynamics are summarized in Table I. Whend=s=0, this
model corresponds to the single-species annihilation and
coalescence model. The model withD=l=h=0 is the well-
known contact processf23g. When all processes are present,
this model is known to show an absorbing phase transition
which shows the same critical behavior as that of the directed
percolationf24g.

The Hamiltonian of this reaction-diffusion system isĤ

=onsĤn
D+Ĥn

l+Ĥn
h+Ĥn

d +Ĥn
sd with

Ĥn
D = Do

i=1

d

fr̂ns1 − r̂n+ei
d − ânân+ei

† + s1 − r̂ndr̂n+ei
− ân

†ân+ei
g,

s26ad
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Ĥn
l = lo

i=1

d

sr̂nr̂n+ei
− ânân+ei

d, s26bd

Ĥn
h =

h

2o
i=1

d

s2r̂nr̂n+ei
− r̂nân+ei

− ânr̂n+ei
d, s26cd

Ĥn
d = dsr̂n − ând, s26dd

Ĥn
s =

s

2o
i=1

d

fr̂ns1 − r̂n+ei
d − r̂nân+ei

† + s1 − r̂ndr̂n+ei
− ân

†r̂n+ei
g,

s26ed

where r̂n; ân
†ân is the number operator and we drop the

unnecessary species index. The operators satisfy the commu-
tation relations Eqs.s11d with M =1. Following the proce-
dure explained in Sec. II, we can find the evolution operator
L with the prescription Eq.s18bd. If we write L as L
=onoi=1

d Ln,i, we obtain

Ln,i = s2D + ddw̄n
]

]w̄n
− SD +

s

2
DSw̄n

]

]w̄n+ei

+ w̄n+ei

]

]w̄n
D + Sl +

h

2
+

s

2
Dsw̄n + w̄n+ei

d
]2

]w̄n ] w̄n+ei

+ sl + h + s

− 2Ddw̄nw̄n+ei

]2

]w̄n ] w̄n+ei

+ SD +
s

2
Dsw̄n

2 + w̄n+ei

2 d
]2

]w̄n ] w̄n+ei

+
s

2
w̄nw̄n+eiFsw̄n + w̄n+ei

d
]2

]w̄n ] w̄n+ei

− S ]

]w̄n
+

]

]w̄n+ei

DG .

s27d

If we use an uncorrelated initial condition with densityr0,
the initial-state vector and the initial generating function can
be written as

uP;0l = p
n

fs1 − r0d + r0ân
†gu0l,

Fshw̄j;0d = p
n

s1 + r0w̄nd. s28d

Hence Eqs.s27d and s28d along with Eq.s21d fully specify
the above reaction-diffusion system.

Let us assume that the solution of Eq.s21d is written as
Fshw̄j ,D ,l ,h ,d ,s ,r0; td. Rescaling the fieldw̄=mw̄8sm
.0d , F is modified to

Fshw̄j,D,l,h,d,s,r0;td = Fshw̄8j,D̃,l̃,h̃,d̃,s̃,mr0;td,

s29d

where the relations between parameters with and without a
tilde are found by settingw̄=mw̄8 in Eq. s27d, which read

s̃ = ms,

2D̃ + d̃ = 2D + d,

D̃ +
s̃

2
= D +

s

2
,

l̃ +
h̃

2
+

s̃

2
=

1

m
Sl +

h

2
+

s

2
D ,

l̃ + h̃ + s̃ − 2D̃ = l + h + s − 2D. s30d

SinceF on the right-hand side of Eq.s29d can be regarded as
a solution of Eq.s21d with tilded rates and initial density
mr0, the two systems connected by Eq.s30d share the same
generating function. The relation of the correlation function
can be found by differentiatingF with w̄, which reads

Ckshxj,D,l,h,d,s,r0;td = m−kC̃kshxj,D̃,l̃,h̃,d̃,s̃,mr0;td,

s31d

where is thek-point correlation functions of the reaction-
diffusion systems with the untildedstildedd transition rates.
Thus, for arbitrarym, which ensures all tilded parameters are
non-negative, we can find the equivalent stochastic systems
to the system with untilded parameters.

Let us find the equivalent systems to the single-species
pair annihilation modelsh=s=d=0d. For givenm, the tilded
rates are found as

TABLE I. Reaction-diffusion processes of single species and
their rates.

Diffusion Ax↔xA with rateD

Pair annihilation AA→xx with ratel

Coalescence AA→Ax with rateh /2

Coalescence AA→xA with rateh /2

Death A→x with rated

Branching xA→AA with rates /2

Branching Ax→AA with rates /2
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D̃ = D, s̃ = 0, d̃ = 0,

h̃ = 2S1 −
1

m
Dl, l̃ = S 2

m
− 1Dl, s32d

where 1ømø2 should be satisfied to have the physical
meaning. If we choosem=2 in Eq. s32d, the tilded rates

becomeD̃=D , h̃=l, and d̃=s̃= l̃=0, which are the transi-
tion rates of the single-species coalescence model with the
initial densityr̃0=2r0 sof courser0 should not be larger than
1
2d. Hence all kinds of correlation functions of the pair anni-
hilation and coalescence models are related to one another in
any dimension. This method also reproduces all results in
Ref. f22g regarding the equivalence of stochastic systems by
adjustingm and also finds the initial condition relation.

Next, we apply the generating function method to find the
equivalence between three-particle annihilation models. To

our knowledge, this equivalence has not been studied in the
literature, although the full renormalization-group study of
this model can be found in Ref.f6g. The dynamics of the
three-particle annihilation model is summarized in Table II.
The procedure to find the equivalence relations is the same
as those explained above. First, we find theHamiltonianand
the corresponding evolution operator. The corresponding

Hamiltonian is Ĥ=onoi=1
d sĤn,i

D +Ĥn,i
l1 +Ĥn,i

l2 +Ĥn,i
l3d with

Ĥn,i
D = Dfr̂ns1 − r̂n+ei

d − ânân+ei

† + s1 − r̂ndr̂n+ei
− ân

†ân+ei
g,

s33ad

Ĥn,i
l1 =

l1

3
f3r̂nr̂n+ei

r̂n+2ei
− ânr̂n+ei

r̂n+2ei
− r̂nr̂n+ei

ân+2ei

− r̂nân+ei
r̂n+2ei

g, s33bd

Ĥn,i
l2 =

l2

3
f3r̂nr̂n+ei

r̂n+2ei
− ânân+ei

r̂n+2ei
− ânr̂n+ei

ân+2ei

− r̂nân+ei
ân+2ei

g, s33cd

Ĥn,i
l3 = l3fr̂nr̂n+ei

r̂n+2ei
− ânân+ei

ân+2ei
g, s33dd

and the evolution operator isL=onoiLn,i with

Ln,i = Dsw̄n − w̄n+ei
dS ]

]w̄n

−
]

]w̄n+ei

D + Dsw̄n − w̄n+ei
d2 ]

]w̄n

]

]w̄n+ei

+
1

3
sl1 + 2l2 + 3l3dsw̄n + w̄n+ei

+ w̄n+2ei
d

]

]w̄n

]

]w̄n+ei

]

]w̄n+2ei

+
1

3
s2l1 + 3l2 + 3l3dsw̄nw̄n+ei

+ w̄n+ei
w̄n+2ei

+ w̄n+2ei
w̄nd

]

]w̄n

]

]w̄n+ei

]

]w̄n+2ei

+ sl1 + l2 + l3dw̄nw̄n+ei
w̄n+2ei

]

]w̄n

]

]w̄n+ei

]

]w̄n+2ei

.

s34d

By rescalingw̄=mw̄8, we find the parameter relations

D̃ = D, l̃1 + 2l̃2 + 3l̃3 = m−2sl1 + 2l2 + 3l3d,

2l̃1 + 3l̃2 + 3l̃3 = m−1s2l1 + 3l2 + 3l3d,

l̃1 + l̃2 + l̃3 = l1 + l2 + l3. s35d

First consider 3A→0 only sl1=l2=0d. Unfortunately, the
only possible value ofm is 1, which means there is no
equivalent procedure to 3A→0. However, if we setl2=l3
=0, we find

l̃1 = l1S3 −
2

m
D, l̃2 = l1

− 1 + 4m − 3m2

m2 ,

l̃3 = l1s1 − m−1d2, s36d

where the valid range ofm is 2/3ømø1.
Up to now, we have found the equivalence for single-

species reaction-diffusion systems, but the formalism ex-
plained above can be extended to multispecies problems. As
an example, let us consider ad-dimensional two-species an-
nihilation model. There are two kinds of species,A and B.
Both particles have the same diffusion constantD. When two
different species form a pair, one of the following reactions
may occur. Both particles are removed, or only one particle
is annihilated. For the one-particle annihilation process, there
are two possibilities. The remaining species stays where it
was or moves to the other site. For these dynamics, we as-
sign transition ratesl spair annihilationd, h sone-particle an-
nihilation without location changed, andz sone-particle anni-
hilation with location changed. The dynamics is summarized
in Table III.

TABLE II. Reaction-diffusion processes of the three-particle an-
nihilation model and their rates.

Ax↔xA with rateD

AAA→AxA, xAA, or AAx with ratel1/3

AAA→Axx , xAx, or xxA with ratel2/3

AAA→xxx with ratel3
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The Hamiltonian for this model isĤ=onoi=1
d Ĥn,i with

Ĥn,i
D = DsÂnv̂n+ei

− ânân+ei

† d + DsB̂nv̂n+ei
− b̂nb̂n+ei

† d + DsÂn+ei
v̂n

− ân+ei
ân

†d + DsB̂n+ei
v̂n − b̂n+ei

b̂n
†d, s37ad

Ĥn,i
l = lsÂnB̂n+ei

− ânb̂n+ei
+ B̂nÂn+ei

− b̂nân+ei
d, s37bd

Ĥn,i
h = hsÂnB̂n+ei

− ânB̂n+ei
+ ÂnB̂n+ei

− Ânb̂n+ei
+ B̂nÂn+ei

− b̂nÂn+ei
+ B̂nÂn+ei

− B̂nân+ei
d, s37cd

Ĥn,i
z = zsÂnB̂n+ei

− b̂n
†ânb̂n+ei

+ ÂnB̂n+ei
− ânâ

dagn+ei
b̂n+ei

+ B̂nÂn+ei
− ân

†b̂nân+ei
+ B̂nÂn+ei

− b̂nb̂n+ei

† ân+ei
d,

s37dd

whereÂn sB̂nd is the number operator for speciesAsBd, and
v̂n is the vacuum projection operator with the formv̂n=1

−Ân−B̂n. We use a different symbol for the different species
and drop the species indices. The commutation relations for
the operators in Eq.s37d correspond to theM =2 case of Eq.
s11d. The evolution operator takes the formL=onoi=1

d Ln,i
with

Ln,i = DFsw̄n − w̄n+ei
dS ]

]w̄n

−
]

]w̄n+ei

D + sc̄n − c̄n+ei
dS ]

]c̄n

−
]

]c̄n+ei

DG + DFsw̄n − w̄n+ei
d2 ]

]w̄n

]

]w̄n+ei

+ sc̄n − c̄n+ei
d2 ]

]c̄n

]

]c̄n+ei

G
+ Dsw̄nc̄n+ei

+ c̄nw̄n+ei
dS ]

]w̄n

]

]c̄n+ei

+
]

]c̄n

]

]w̄n+ei
D + sD − hdFsw̄n + c̄n+ei

d
]

]c̄n

]

]w̄n+ei

+ sc̄n + w̄n+ei
d

]

]w̄n

]

]c̄n+ei

G
+ sz + 2h + l − dDdFsw̄n + c̄n+ei

d
]

]w̄n

]

]c̄n+ei

+ sc̄n + w̄n+ei
d

]

]c̄n

]

]w̄n+ei
G

+ s2z + 2h + l − 2dDdSw̄nc̄n+ei

]

]w̄n

]

]c̄n+ei

+ c̄nw̄n+ei

]

]c̄n

]

]w̄n+ei
D , s38d

where w̄sc̄d corresponds to speciesA sBd. By rescaling, we
find the relations

D̃ = D, D̃ − h̃ =
1

m
sD − hd,

z̃ + 2h̃ + l̃ − D̃ =
1

m
sz + 2h + l − Dd,

2z̃ + 2h̃ + l̃ − 2D̃ = 2z + 2h + l − 2D, s39d

or

D̃ = D, z̃ = z +
m − 1

m
sz + 2h + l − Dd,

l̃ = l +
2 − 2m

m
sz + h + ld, h̃ =

h

m
+

m − 1

m
D. s40d

If we seth=z=0, we can find

D̃ = D, h̃ =
m − 1

m
D, l̃ =

2 − m

m
l,

z̃ =
m − 1

m
sl − Dd. s41d

If lùD, we obtain equivalent stochastic processes with the
pair annihilation modelA+B→x for 1ømø2. Other
equivalent relations can be found by adjustingm for different
values of untilded parameters.

IV. SUMMARY AND DISCUSSION

In summary, we have presented the path integral represen-
tation of the generating function for classical stochastic ex-

TABLE III. Dynamics of the two-species annihilation model
and respective rates.

Ax↔xA with rateD

Bx↔xB with rateD

AB→xx with ratel

BA→xx with ratel

AB→Ax or xB with rateh

BA→Bx or xA with rateh

AB→Bx or xA with ratez

BA→Ax or xB with ratez
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clusive systems. Using this formalism, we have shown the
equivalences of some stochastic systems of single- and two-
species models. Furthermore, since our formalism is insensi-
tive to the choice of the functionf in Eq. s16d, we can have
different action forms for one system depending on the
choice of f. Although they may have different forms, the
long-time behavior of physical quantities derived from each
action form should be the same. For example, if we use the
prescription Eq.s18cd in Eq. s16d, the action is equivalent to
the action with the choice offsw̄d=w̄ in Eq. s16d and with the
change of fields, such asw̄°ew̄ andw°e−w̄w, performed. In
fact, if we use the functionfsw̄d=ew̄ and expand the function
f in terms ofw̄ keeping only terms up tow̄2 order, we obtain
the same action as the one derived in Ref.f17g. In many
cases, any term which containsw̄ higher than second order is
irrelevant. The method introduced in Ref.f17g is legitimized
by the force of the renormalization-group argument. In some
cases, usually in reaction-diffusion systems, the canonical
dimension ofw̄ is 0 f6,7g, so it is not clear whether we can
neglect the higher-order terms after expandingf. In this situ-
ation, one should use Eq.s18ad or Eq. s18bd to ensure the
completeness of the formalism. As an example, let us con-
sider again the model described by the reaction given in
Table I with h=d=s=0. If we use Eq.s18bd, the action
becomessup to relevant termsd

S=E dtddxhw̄s]t − D¹2dw + 2lw̄w2 + lw̄2w2j, s42d

where we neglect the termDs¹w̄d2w2 due to its irrelevance.
Equations42d is exactly the same as the action in Ref.f6g

obtained using a bosonic formalism. Since we expect that
boson and hard-core boson annihilation models should be-
long to the same universality class, this coincidence is not
surprising. If we perform the change of fields explained
above, and keeping terms up toOsw̄2d, the action takes the
form

S8 =E dtddxhw̄s]t − D¹2dw̄ − Dws¹w̄d2 + 2lw̄w2 − 2lw̄2w2j,

s43d

which can also be found by the method introduced in Ref.
f17g. These two actions, Eq.s42d and Eq.s43d, look different,
although they describe the same system. This is due to the
dropping of higher-order terms ofw̄. To describe the system
properly, we have to keep all the higher-order terms ofw̄
which are marginal. Then, two actions will give the same
long-time behavior of physical quantities.

Although we have concentrated on reaction-diffusion sys-
tems, the applicability of this formalism is not restricted to
reaction-diffusion systems. We found Langevin equations for
DLG f13g and other lattice-gas-type models. This will be
published elsewheref25g.
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