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We present the path integral representation of the generating function for classical exclusive particle sys-
tems. By introducing hard-core bosonic creation and annihilation operators and appropriate commutation
relations, we construct the Fock space structure. Using the state vector, the generating function is defined and
the master equation of the system is transformed into the equation for the generating function. Finally, the
solution of the linear equation for the generating function is derived in the form of the path integral. Applying
the formalism, the equivalence of reaction-diffusion processes of single species and two species is described.
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I. INTRODUCTION exclusive property of the particles is important. Several at-
tempts have been made to incorporate the exclusive property
Recently, nonequilibrium systems such as reactioninto a field theory. One way to take the exclusive property
diffusion systems, driven lattice systems, and cellular auinto account is to exploit the physical knowledge of the sys-
tomata have been intensely investigated, not only because gdm phenomenologically as Zia and Schmittmah8] have
their connections to a variety of important physical phenom-done for the DLG. This method is an approximation and
ena (nonequilibrium phase transitions, long-range correlacannot be systematic. Other approaches proposed by Brunel
tions, and self-organized criticalitybut also because of the et al. [14] and Bares and Mobilifil5] are formulated using
analytic challenge due to the lack of a general formalism tahe fermionic path integral and are rather difficult to analyze
describe nonequilibrium systerfis]. Although numerical ap- and to extend for higher spatial dimensions or multispecies
proaches have played a major role in the investigation oprocesses. Recently, van Wijland extended the bosonic field
nonequilibrium systems and have been successful in mangieory by introducing the exclusion constraint operator to
areas, a general field-theoretic formalism has been constantisike the exclusive property into accoufit6]. He used
sought because, along with a renormalization-group analysigosonic creation and annihilation operators to construct the
it would provide a systematic tool to evaluate physical ob-path integral by considering the exclusive property using the
servables in the scaling regini2]. It is difficult to investi-  exclusion constraint operator.
gate nonequilibrium systems analytically at the microscopic The authors previously presented a hard-core bosonic
scale because there are too many microscopic variables ifield theory using hard-core bosonic creation and annihila-
volved, and microscopic variables take discrete values. Aion operatord17]. It has been successfully applied to the
field-theoretic strategy is to find, starting from the micro- asymmetric exclusion process and several restricted solid-on-
scopic rules, the equations of motion of well-chosen coarsesolid-type growth models to provide the correct Langevin-
grained variables. These mesoscopic variables take contintpe equations of motion and the proper path integral formu-
ous values and vary continuously in space and time. Thelation [18]. However, the formalism assumed the existence
describe the system at the mesoscopic scale, while keeping the Fokker-Planck equations for processesgriori and
track of all the fluctuations related to the microscopic de-derived the Langevin-type equations of motion. In this paper,
grees of freedom. Doi first introduced a field-theoretic for-we develop a more general path integral formalism for non-
malism for reaction-diffusion systems using the bosonic coequilibrium systems with exclusive particles. In what fol-
herent state path integrg8], and several authors revived the lows, we present the derivation of the path integral formula-
formalism and incorporated renormalization-group ap-tion for systems with exclusive particles using the generating
proaches to the description of the anomalous kinetics irfunction of the correlation functions, and we will illustrate
reaction-diffusion systems and the stochastic sandpile modélow the formalism can be applied to various reaction-
[4-9]. diffusion systems to establish nonequilibrium universality
Despite the success achieved by the bosonic field theorglasses.
for reaction-diffusion systems, some nonequilibrium systems
with exclusive particles cannot be analyzed correctly by the
bosonic field theory. Driven reaction-diffusion systems
[10,11], multispecies adsorption modéls2], and driven lat- The dynamics of a stochastic system are usually described
tice gases(DLG) [13] are some examples to which the by the master equation governing the time evolution of the
bosonic field theory cannot be applied. In these systems, therobability P(C;t). P(C;t) is the probability of a system be-
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ing in a microstate’ at timet. The master equation takes the 8,n=|0nXanl, &', =|a)0,] (a+#0), (8)
form [19-21] ' ’
; with the closure relation
—PC;) = 2 {WeerP(C5) = WercP(CiD}, (D) M
at c'#C
2 |an><an| =1 (9)
whereW,. is the transition rate, or transition probability per a=0

unit time, from microstate’ to C'. Introducing the matrix  and the orthonormality condition
HCC!,

<an|Bn>:5a,ﬁ, a,=0,1,...,M. (10
HCC’ = 5CC'2 WCIIC - WCC’ y (2) . .
o These operators obey the hard-core bosonic commutation re-
lations
Eq. (1) can be written succinctly as
d é‘d,ﬂé‘ﬁ,n = é‘Zné‘Ln =0, (113)
—P(C;t) == 2 Hee P(C51). )
ot -
c M
~ N _ At a2
Due to the resemblance of the master equation to the qndan =1 gflay,na%m (11b

Schrddinger equation, it is convenient to introduce Dirac’s
bra-ket notation and an orthonormal basis formed by mi- A At o
crostates {|C)}. Introducing the state vector|P;t) [&en8gml =[8an8ml =0 (N # m), (119

=3P(C;1)[C) and theHamiltonian operatorH whose com-  \where Egs(119 and (11b) prohibit double occupancy at a
ponent isHcc: in this orthonormal basis, the master equationsingle site even for different species—hence the nomencla-
can be written in the form of an imaginary time Schrodingerture “hard core.” Equatiofil10) states that any two operators
equation, defined at different sites commute—hence the name “boson.”

P R As usuaI,NCm:<'§1;er]<€1&,n is the number operator whose eigen-

—|P;t) =—H|P;t). (4)  values are Qvacanj and 1(occupied.

Jt To each state of the system, we can associate the state
In this representation, the average of a physical quantity ca#ector|P;t), considered an element of Fock space,

be written as
X P;ty =2 PENE DN, (12)
(0)=2 0(OP(EC;1) = (-|O|P;1), (5 Ny
¢ where [{N}) is the microstate defined in Eq47). The mi-
where © is an operator with the element&’|O|c)  crostate can be written in terms of hard-core boson operators
=8O(C) and the projection statg| is defined as as

M
(]= ; «. ®) Ny =TT IT @&, )Nanl{o}),

n o=1

A natural way to deal with a stochastic system in which

the particle number at each site varies is to introduce a Fock- M
space-like structure. When a system Mglifferent particle AN} = <{0}|H ITa Nan, (13)
species with the exclusive property, at each site there are Nl

(M+1) possible states: a vacuum state dhaccupied states _ _
depending on particle species. Using Greek indices for th#hereN,,, is the eigenvalue of the number operator corre-
kinds of particle species—a vacuum state is regarded as sponding to the eigenstafdl})(N,, N} =N, ,[{N})). Using

new species and 0 is reserved for a vacuum state—and bolthrd-core boson operators, the projection state can be written
Latin indices for site locations, we denote a state at thensite gg
by |a,), Wherea, is the index of species occupying the site

n and goes from 0O toM. For microstates of the whole sys- M .
tem, we work in a phase space which is composed of the Cl=qoyII {1+ X a,,]. (14
direct product of single-site microstates of all sife$, n o=l

_ Now we introduce the generating functiéit{¢};t), de-

|{N}> Qr?|a'n>- (7) fined as

At each siten, creation and annihilation of the exclusive F{eht) = {@}|P;t), (15)
particles are described by creation and annihilation operators
as follows: where
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M - Eqg. (22) with any of the prescription Eq$18) is
<{5}| = Qr? <0n| + E <an|f(‘Pa,n)
a=1

‘A d nd_an _ "y 2
Fiighn = | T1 = Pete e ({7 0)T 0,

M
=11 (1+2 [F(@an) = 1]a;néa,n>, (16) (22)
n a=1l
. . . . . with
andf is an analytic function of its argumert.is the gener-
ating function in that by differentiatin with respect tof & —SUBH ek HE o0+ B0}
and settingf=1, we can find all kinds of correlation func- T%n}(t)‘ Dig}Di{gle > FRTIET, (23)
tions of the particle density. For example,
where
J
(Nep) = ———F({ehit)|  =([a] a.qlP:0. (17) N _
TR P L 5= |l S50t pun+ £G@OL60D | (2
The exact form off does not matter. In what follows, we 0 Len
mainly use three kinds of functions, and
o) =¢, (183 {8 Am=2 unlan (25)
a,n
fle)=1+¢, (18b) Taking a continuum limit and keeping the most relevant
- terms, we arrive at mesoscopic action which is equivalent to
f(o) = explo), (180  the microscopic master equation. The long-time properties

are extracted by studying the action using renormalization-

and these will be used in different contexts. group theory.

By differentiating Eq.(15) with respect ta, we obtain
Ill. EQUIVALENCE BETWEEN STOCHASTIC SYSTEMS

J -
EF({@;t)=—<{@|H|P;t). (19 The equivalence between stochastic systems has been
usually studied using similarity transformation for single-
Since our main goal is to find a path integral representatioRpecies reaction-diffusion systef2]. This section shows
of F({¢};t) from Eg. (19), we need to find a linear partial the equivalence between stochastic systems using the evolu-
differential equation abouF({¢};t). This can be achieved tion equation of the generating function in Eg1) with the

using the following properties af ¢}/ prescription Eq(18b) instead of using the similarity trans-
At A formation. The key mechanism to deduce the equivalence
{eHagn=f(@anVallel, (208 between stochastic systems is the rescaling of the fid¢kke

below), which is simple enough to be applicable to higher-
d dimensional systems and multispecies systems.
m«aﬂ’ (20b) To begin with, we consider a single-species reaction-
' diffusion model which is defined on ddimensional hyper-
cubic lattice with diffusion, pair annihilation, coalescence,
—{e}, (200 death, and single-particle branching. Particles move with a
f(egn) diffusion constantD. When two particles form a nearest-
neighbor pair, both of them are annihilated with rater one
{e}la, na};n = aB{/ﬂ({aL (20d)  of them is removed with rate;. Additionally, a single par-
o ticle is annihilated spontaneously with rafeand a particle-
where vacant pair becomes a particle-particle pair with @tdhe
M dynamics are summarized in Table I. Whéro=0, this
| |

(ellaen=

(@A g = (@)~

- L_ model corresponds to the single-species annihilation and
g=19Inf(egn) coalescence model. The model wiltFA=#7=0 is the well-

. . ) known contact proce§23]. When all processes are present,
is the projection operator to the vacuum state at sitRe-

. . S X ‘ this model is known to show an absorbing phase transition
lations(20) yield the partial differential equation for the gen- hich shows the same critical behavior as that of the directed
erating function,

percolation[24].

The Hamiltonian of this reaction-diffusion system isl
=3, (HR+HY+H7+H2+HY) with
d

%F({E}:t):—c<{a,{f_})ﬁ{a;o, (21)
[

where £ takes the normal-ordered form, that is, als are ~D R A At o At a
located to the left side of ang/dp. We call £ an evolution  Hpy = D2 [pa(1 = Prse) ~ Bndlee * (1= Pn)pnse, ~ Bndnse ],
operator. Since this is a linear equation, we can write the path =1

integral solution ofF({¢};t). The path integral solution of (26a
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TABLE |. Reaction-diffusion processes of single species and NS on
their rates. Ho = 8(pn = 8n). (26d
Diffusion AD — DA with rate D
Pair annihilation AA— DD with rate A
. d
Coalescence AA—AD with rate /2 T
A NP _~oat _~ya _ate
Coalescence AA— @A with rate 7/2 Hi = 2% [pn(1 = Piee) = Prdnse, * (1= Pu)Pnve, ~ 8nPnse ],
Death A—Q with rate § (260
Branching DA— AA with rate o/2 ©
Branching AD — AA with rate o/2

where p,=a'a, is the number operator and we drop the
unnecessary species index. The operators satisfy the commu-
tation relations Eqs(11) with M=1. Following the proce-
dure explained in Sec. Il, we can find the evolution operator
L with the prescription Eq{(18b). If we write £ as L

d
H7= 32 Zhobnve, ~ bofuse = Bnbse), (260 TEaZizaLos We oblain
i=1

d

P'L\ = )\2 (ﬁni’me, - énéme,)i (26b)
i=1

L (2D + 9o, J (D+0> P + 0, J +<)\+77+U>(_+_ ) 7 +(N+ 7+
i = I - I ppp— - - —— g
n,i (Pna‘Pn 2 (Pna@mel Pn+e Jeon 2 9 Pn T Pn+g Jen ene n
_ & ( a) & o | - _ & d d
-2D ———— + D+ (PP ) ————+ — + — | =+ = .
)‘Pn‘Pn+ela<Pn 3<Pn+e| 2 ((Pn (Pn+e~|) Jen a‘Pn+e| 2‘Pn‘Pn+(—:~I (‘Pn ‘Pn+e|)(9¢n (9(Pn+e| Jen a‘Pn+e|
(27
[
If we use an uncorrelated initial condition with densy, - T o
the initial-state vector and the initial generating function can D+ P =D+ P
be written as
1P;0)=TT1(1 - po) + poa]0), X+1]+g:1()\+2+g>,
n 2 2 u 2 2
F({E:O)ZH(l*‘Poan)- (298) X+7,+Z‘r—25=)\+77+o—2D. (30)
n

SinceF on the right-hand side of E429) can be regarded as
Hence Eqgs(27) and(28) along with Eq.(21) fully specify  a solution of Eq.(21) with tilded rates and initial density
the above reaction-diffusion system. upo, the two systems connected by E0) share the same
Let us assume that the solution of Eg1) is written as  generating function. The relation of the correlation function
F({¢},D,\,75,8,0,p0;1). Rescaling the fielde=ug’ (.  can be found by differentiating with ¢, which reads

>0), F is modified to o~ ~ o~ o~
C({x},D,\, 7,8,0,p0;t) = u *C({X},D,\, 7, 8,5, mpo; t),

F({a! D,)\, 7 510-1p0;t) = F({?}:ﬁaxv:"]:&alﬂpoit)y (31)

(290 where is thek-point correlation functions of the reaction-
diffusion systems with the untildedilded) transition rates.
#hus, for arbitraryu, which ensures all tilded parameters are
non-negative, we can find the equivalent stochastic systems
- to the system with untilded parameters.

where the relations between parameters with and without
tilde are found by setting=u¢’ in Eq. (27), which read

o= uo, N . . .
Let us find the equivalent systems to the single-species
o pair annihilation mode{n»=o0=6=0). For givenu, the tilded
2D+ 6=2D + 6, rates are found as
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TABLE II. Reaction-diffusion processes of the three-particle an-our knowledge, this equivalence has not been studied in the

nihilation model and their rates. literature, although the full renormalization-group study of
this model can be found in Ref6]. The dynamics of the
AD — DA with rate D three-particle annihilation model is summarized in Table II.
AAA— ADA, DAA, or AAD with rate\;/3 The procedure to find the equivalence relations is the same
AAAADD , DAD, or DA with ratex,/3 as those explained above. First, we find temiltonianand

AAA— BB with rate A, the corresponding evolution operator. The corresponding

N 1 ~ (2
n=2 1——)>\, A= ——1>>\, (32)
y2

where 1=u<2 should be satisfied to have the physical
meaning. If we choose.=2 in Eq. (32), the tilded rates
becomeD=D, 7=\, and §=a=\=0, which are the transi-
tion rates of the single-species coalescence model with the
initial densitypy=2pg (of coursepy should not be larger than
%). Hence all kinds of correlation functions of the pair anni-
hilation and coalescence models are related to one another in
any dimension. This method also reproduces all results in
Ref.[22] regarding the equivalence of stochastic systems by
adjustingu and also finds the initial condition relation.

Next, we apply the generating function method to find the

Hamiltonianis H=3,3%, (HP, +HA+H2+ HX9) with

I:IE,i = D[f)n(l _IAJn+eI) - é—nérTwel + (1 _i)n)ﬁmel - é‘xémei]-
(333
A Ay —
n,i

Trnn A~ - A A oa AAoa
§[3Pnpn+eipn+2g ~ @nPn+ePn+2e T PnPiteBntoe

- ﬁnén+e~llsn+2e~l]y (33b)

~ A
N N2 o Aa A A oA
Hpi = E[E’PnpmelpnﬂeI ~ An8nre Pr+e T AnPrre Bntoe

- ﬁnén+qé-n+26|]- (339

Hﬁ?: = )\3[£’n/3n+elf’n+2el - anEAin+<-:AIE’\in+2el:|v (33d)

equivalence between three-particle annihilation models. Tand the evolution operator B=X.%,L,; with

- 1% J — — L, d J 1 - — Jd dJ 14
['n,i = D(‘Pn - (Pn+e|) e — + D(@n - (Pn+e|) ri—— _()\1 +2\,+ 3)\3)(€Dn + Pn+e + ‘Pn+ZeI)T — —
Iy a‘Pn+e| Iy 07(Pn+e| I a@mel 19(Pn+26~|
1 - - - —_9dJ d d _ — Jd J %
+ (2N + 3o+ N3) (@nnve + Prie Prize + Pn+2e, Pn)T—"— — + (N1 + N2+ N3) Pnnse Pri2e . — — — -
3 ' ' ' 0 IPnre I Pnize ' 0 IPnre I Pnsze
(34)
I
L . . ~
By rescalinge=pu¢’, we find the parameter relations Na=A(1— Y2, (36)

5 = D, Xl + 2X2 + 3}:3 = M_Z()\l + 2)\2 + 3)\3),

where the valid range gk is 2/3<u<1.

Up to now, we have found the equivalence for single-

species reaction-diffusion systems, but the formalism ex-
le + 3}:2 " 3X3: wH2N + 3N, + 3Ny), plained above can be extended to multispecies problems. As

an

example, let us considerdadimensional two-species an-

nihilation model. There are two kinds of speciédsand B.
N+ Mo+ o= M+ Mo+ \ (35) Both particles have the same diffusion constan¥When two
prizrAsm i e T e different species form a pair, one of the following reactions

First consider 3—0 only (A;=\,=0). Unfortunately, the
only possible value ofu is 1, which means there is no
equivalent procedure toA3— 0. However, if we sebh,=\;
=0, we find

may occur. Both particles are removed, or only one particle
is annihilated. For the one-particle annihilation process, there
are two possibilities. The remaining species stays where it
was or moves to the other site. For these dynamics, we as-
sign transition ratea (pair annihilation, » (one-particle an-

) nihilation without location changeand{ (one-particle anni-
N = )\1<3 _ E) =\ —1+4u-3u hilation with location change The dynamics is summarized

=\ ,
2
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TABLE lll. Dynamics of the two-species annihilation model
and respective rates.

AD — DA with rate D
BZ — @B with rate D
AB—QQ with rate A
BA—Q® with rate A
AB—AQD or @B with rate »
BA—B® or JA with rate »
AB— B@ or @A with rate ¢
BA—AQD or @B with rate ¢

The Hamiltonianfor this model isI:|=2n2id:1I:|n,i with

Hrl’?,i = D(Ani}nﬂ-}l - éﬂéIH%) + D(éname

6n+e«| B;) ’

Bubhee) + D(Aniedn

- é-n+e|é'D + D(én+elan - (373)

PHYSICAL REVIEW E/1, 026113(2005

H}r;,i = )\(Aan-el - é-nbn+<-:~| + BnAn+eI - bnén+e|)1 (37b)
|qr717| = 77('8‘nén+el - énén+ e A é - A E)n+e| + én'a‘n+eI
- BnAn+e| + énAn+e~I - énéln+e|)v (370)
|:|r$;,| = g(Anéme, - lA)géane, + Anémei - énadagme, 6n+eI
+ énAn+eI - é—lsnéme, + énAn+eI - tA)nE’;+<alé-n+el)v

(37d)

whereAn (én) is the number operator for specid¢B), and
v, is the vacuum projection operator with the forip=1

—-A,—B,. We use a different symbol for the different species
and drop the species indices. The commutation relations for
the operators in E(37) correspond to thi =2 case of Eq.
(11). The evolution operator takes the forﬁtEnE?:lEn,i

with

S J — — J J d — L, 4
‘Cn,i:D (‘Pn_(Pn+e|) [r— +(dfn_§[fn+el) [ — +D (‘Pn (Pn+e) — T — +(’//n_(/fn+ei) e —
I¢n a@n+e| Iy &’/’me In (9(pn+e n ﬁ¢n+e|
(9 J J — J
+ D(¢n¢n+e + lpn‘Pn+e) — T = +(D-n) (QDn + ¢n+e) —— + (I + §Dn+e|) —
& n(?zpme alrljna(Pme I, a<Pn+<-:* c? n(?zpme
. — Jd
+({+2n+\-dD) (@n""ﬂmq)f — +(¢n+@n+e) — =
Ien &zﬁme‘ iy, IPnig,
_— J Jd J
+(20+ 29+ N = 2dD)| @pifnre T—— + ¢n¢n+e — (39
a¢n‘9$n+vel Fhﬂ 3(pn+q
[
- , : - 2-2 -1
v_vhere () c_orresponds to speciés(B). By rescaling, we Y=+ M(§+ 2+N), H= noH D. (40)
find the relations m
1 If we setn=¢=0, we can find
D=D, D-%==(D-7), - 1 - 9_
p D=D, 7=£""p, =%,
z M
~ o~ ~ 1 -~ u-
§+2n+>\—D:;(§+2n+A—D), [=—(\-D) (42)

20+ 27+ N-2D=20+2n+\—-2D, (39)

or

B=D, T=r+E 2(r+29+1-D),

If A=D, we obtain equivalent stochastic processes with the
pair annihilation modelA+B— @ for 1su<2. Other
equivalent relations can be found by adjustindpr different
values of untilded parameters.

IV. SUMMARY AND DISCUSSION

In summary, we have presented the path integral represen-
tation of the generating function for classical stochastic ex-
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clusive systems. Using this formalism, we have shown thebtained using a bosonic formalism. Since we expect that
equivalences of some stochastic systems of single- and twdroson and hard-core boson annihilation models should be-
species models. Furthermore, since our formalism is insensieng to the same universality class, this coincidence is not
tive to the choice of the functiohin Eqg. (16), we can have surprising. If we perform the change of fields explained

diffgrent action forms for one system.depending on theahove, and keeping terms up @(¢?), the action takes the
choice of f. Although they may have different forms, the f5rm

long-time behavior of physical quantities derived from each

action form should be the same. For example, if we use the | _ o ’ — —
prescription Eq(180) in Eq. (16), the action is equivalent to S = | dtdX{e(d— DV?) o~ De(Ve)® + 2hee” - 206?67},

the action with the choice df¢)=¢ in Eq.(16) and with the

change of fields, such as—e® and p— e ¢, performed. In (43

fact, if we use the functiofi(¢) =e® and expand the function \ynich can also be found by the method introduced in Ref.
f in terms of keeping only terms up t@? order, we obtain [17]. These two actions, E¢42) and Eq.(43), look different,

the same action as the one derived in R&f7]. In many  aynough they describe the same system. This is due to the
cases, any term which contaipshigher than second order is dropping of higher-order terms @f. To describe the system
irrelevant. The method introduced in REL7] is legitimized é)roperly, we have to keep all the higher-order termsgof

by the force of the renormalization-group argument. In som hich are marainal. Then. two actions will give the same
cases, usually in reaction-diffusion systems, the canonicz%’f' . ginal. " " 9
ong-time behavior of physical quantities.

dimension ofe is 0[6,7], so it is not clear whether we can Althouah h d on-diffusi
neglect the higher-order terms after expandintn this situ- though we have concentrated on reaction-diitusion sys-

ation, one should use E¢L88 or Eq. (18b) to ensure the tems, the 'app!icability of this formalism is not restriqted to

completeness of the formalism. As an example, let us conreaction-diffusion systems. We found Langevin equations for
sider again the model described by the reaction given iP-C [13] and other lattice-gas-type models. This will be

Table | with =6=c=0. If we use Eq.(18b), the action Published elsewherg25].

becomedup to relevant terms

S= f dtd?x{@(, — DV?) e + 2Npg?® + N¢?9?},  (42) ACKNOWLEDGMENTS
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